纳米氧化铁由于具有良好的耐光性、耐热性、耐碱、耐酸、耐腐蚀性气体和良好的磁性,广泛应用于颜料、医药、生物等众多领域。目前纳米氧化铁的化学制备方法有空气氧化法有空气氧化法、凝胶-溶胶法、均匀沉淀法、胶体化学法、微乳液法等。南昌大学化工系和江西理工大学材料学院共同研制将超声方法应用于化学反应过程制备氧化铁纳米材料,这不仅拓宽了超声技术的应用领域,而且还解决了纳米材料制备过程所存在的某些难题。
将精制的七水硫酸亚铁溶液配成一定的浓度,以一定浓度的碳酸氢按为沉淀剂,生成Fe(OH)2,加入表面活性剂和分散剂,调剂pH值后,在一定工艺条件和超声波的作用下进行氧化煅烧后得到α-Fe2O3纳米粉体。根据统计测得的粒子的平均粒径为50nm左右,呈圆球形且粒子大小比较均匀,分散性好。
在制备过程中有几点因素会影响制备出的纳米氧化铁的性能。
FeSO4溶液浓度影响会影响α-FeOOH颗粒的大小,Fe(OH)2的生成过程,硫酸亚铁的浓度越高,温度越低,生成晶核数量越多,尽量采用饱和硫酸亚铁。
在超声波作用下,温度升高,蒸汽压上升,超声波声空化作用的空化阀值降低,空化强度降低,从而使得氧化速率减缓,晶核成长时间加长,导致α-FeOOH颗粒长大。制备α-FeOOH温度控制在25~30℃较适宜。
反应时间影响产物的质量。若反应时间过长,粒子粒径明显增大;且在溶液中,晶粒间分子相互作用力增大,使超声波的分散能力减弱,也使粒子易产生团聚。
空气量过大,气体使液体激烈翻滚,破坏胶体,晶核发生沉淀。且如果液体中含气体量多,则超声波空化效应的空化阀值降低,声空化效应减弱,从而使得氧化速度减缓。